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In this paper, we use numerical simulations to demonstrate a half—soliton interaction of waves in a math-
ematical model of a “prey-predator” system with taxis when of two colliding waves, one annihilates and the
other continues to propagate. We show that this effect depends on the “ages” or, equivalently, “widths” of the
colliding waves. In two spatial dimensions we demonstrate that the type of interaction, i.e., annihilation,
quasisoliton, or half-soliton, depends not only on curvature and width of the colliding waves, but also on the
angle of the collision. When conditions of collision are varying in such a way that only a part of a wave
survives the collision, then “taxitons,” compact pieces of solitary waves, may form, which can exist for a
significant time.

DOI: 10.1103/PhysRevE.70.031901 PACS number(s): 87.10.1e

I. INTRODUCTION

In this paper we continue the study of a system of two
spatially distributed populations in a “predator-prey” rela-
tionship with each other, started in our previous works[1–3].
The spatial evolution is governed by three processes: posi-
tive taxis of predators up the gradient of prey(pursuit) and
negative taxis of prey down the gradient of predators(eva-
sion), yielding nonlinear “cross-diffusion” terms, and ran-
dom motion of both species(diffusion). The resulting math-
ematical model is a system of two partial differential
equations,

]P

]t
= fsP,Zd + D¹2P + h− ¹ sP ¹ Zd,

]Z

]t
= gsP,Zd + D¹2Z − h+ ¹ sZ ¹ Pd, s1d

wherePsr ,td is the density of the prey population,Zsr ,td is
the density of the predator population, the nonlinear func-
tions fsP,Zd andgsP,Zd describe local dynamics, including
growth and interaction of the species, whereas the diffusion
terms describe their spread in space, e.g., resulting from in-
dividual random motions. The taxis terms are as in Ref.[4],
constanth− is the coefficient of negative taxis ofP on the
gradient ofZ (prey-evading predators), andh+ is the coeffi-
cient of positive taxis ofZ on the gradient ofP (predators
pursuing prey). For simplicity, the diffusion coefficientD is
considered constant, uniform, and equal for both species. In
this paper we consider problems in one spatial dimension,
r =sxd, and in two spatial dimensions,r =sx,yd.

We consider the local kinetics functionsfsP,Zd and
gsP,Zd, describing the population dynamics of prey(phy-
toplankton) P and predators(zooplankton) Z, in the Holling
type-III form used by Truscott and Brindley[5]. In nondi-
mensional form these are

fsP,Zd = bPs1 − Pd − ZP2/sP2 + n2d,

gsP,Zd = gZP2/sP2 + n2d − wZ. s2d

It is known that at an appropriate choice of parameters, these
kinetics demonstrate “excitable” behavior, and the reaction-
diffusion system(1) with h−=h+=0 has propagating solitary
wave solutions[5,6].

We have studied properties of population taxis waves in
the mathematical model(1) and (2) for one-dimensional
(1D) [1,2] and two-dimensional(2D) [3] cases. In those
works, we have shown that inclusion of the taxis terms can
radically change the properties of propagating waves, com-
pared to the much better studied waves in purely reaction-
diffusion systems without taxis. We have demonstrated that
the very mechanism of propagation of waves in such systems
is different. Here are some peculiar features of taxis waves,
described in Refs.[1,2].

(a) Essentially different shape of the wave profiles. For
the Psx−ctd profile, it could be either a “single-hump” or
“double-hump” shape.

(b) The dependence of the wave-propagating velocity on
the taxis coefficients has two distinct branches, “parabolic”
and “linear.” The transition from one branch to the other
correlates with changes in the shape of the wave profiles: the
parabolic branch of this graph corresponds to a double-hump
shape of thePsx−ctd profile, and the linear branch corre-
sponds to a single-hump shape.

(c) In the space of parameters of Eq.(1), there are large
regions, where waves demonstrate quasisoliton interaction:
they can penetrate through each other, and also reflect from
impermeable boundaries, see Fig. 1(a)–1(c).

(d) For some regions in the parameter space, taxis waves
can spontaneously split, emitting “backward”- propagating
waves. This can be observed both in the case of solitonlike
interaction[Fig. 1(a), solid triangles] and in the case of an-
nihilating waves[Fig. 1(a), hollow triangles]. The backward-
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emitted waves with time either decay, or split themselves. In
the latter case, the chain of splitting events can lead to self-
supporting, aperiodic, or approximately periodic activity.

(e) The dependence of the propagation velocity on diffu-
sion in this system differs from the square-root dependence,
always valid for reaction-diffusion waves, see Fig. 1(d).

Additionally, in two spatial dimensions, we observed the
following [3]:

(f) Partial reflection of waves from boundaries, or their
partial penetration through each other.

(g) “Swollen tips,” i.e., circular wave sources, produced
by free ends of broken waves.

(h) Attachment of free ends of broken waves to the wave
backs.

In this paper, by numerical simulation of systems(1) and
(2) we demonstrate a type of wave interaction, in which of
two colliding waves, one annihilates and the other continues
to propagate. For brevity, we call this behavior “half-
soliton.”

II. DETAILS OF THE MODEL AND NUMERICAL
METHODS

We used “upwind” schemes to approximate the taxis
termsLu=s] /]xdusx,tdf]Ssx,tdg /]x. The idea of the upwind
schemes is that they use not the mean between values of the
variables subject to taxis at two neighboring grid nodes as in
the central scheme, but select one or the other depending on
the direction of taxis, i.e., the sign of the gradient of the
attractant. For details of the schemes we used, see our pre-
vious work [2]. As we have shown in Ref.[2], the implicit
central scheme only works for Eq.(1) if D.0, whereas our
upwind schemes work forD=0 as well. We used a time-
implicit scheme with discretization stepsdx=0.1, anddt=5
310−3 for one-dimensional simulations, and a time-explicit
one with discretization steps fordx=dy=0.5 and dt=5
310−3 for two-dimensional calculations.

FIG. 1. (a),(b),(c) Parametric regions corresponding to different
regimes of taxis wavessb=1,w=0.004d. Solid circles: quasisoliton
waves. Solid triangles: quasisolitons with the wave splitting. Hol-
low circles: stably propagating waves annihilating on collision.
Hollow triangles: splitting waves annihilating on collision. Dots: no
propagating wave solution.(d) Wave-propagation velocity as a
function of the square root of the diffusion coefficient. Solid line
and the upper row of symbols:g=0.016,h−=5, h+=1. Dotted line
and the lower row:g=0.01, h−=h+=1. In reaction-diffusion sys-
tems, this dependence is always a straight line. Here and on other
figures, all parameters and variables are dimensionless.

FIG. 2. The spatiotemporal dynamics of the taxis wave forma-
tion, propagation, and reflection from impermeable boundaries for
system(1) in one-dimensional case withL=250: (a) g=0.01, D
=0.04, h−=h+=1; (b) g=0.016,D=0, h−=5, h+=1. Black corre-
sponds toP=0.9, white toP=0.

FIG. 3. Variations of the propagation velocity(a),(c) and wave width(b),(d) during the transient, corresponding to Fig. 2:(a),(b) g
=0.01,D=0.04,h−=h+=1, (c),(d) g=0.016,D=0, h−=5, h+=1. Width Wstd is defined as the distance between the points on the front and
the back of the wave wherePsx,td=0.4; propagation velocityVsx,td is defined as the instant velocity of such a point on the front, i.e., where
Psx,td=0.4 and]P/]tsx,td.0. Arrows designate the time moments, for which Figs. 4 and 5 show the wave profiles.
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Unless specified otherwise, we have used the same pa-
rameters in Eq.(1) in our numerics, as we used in Ref.[2],
that is b=1, n=0.07,w=0.004, and two different values of
g: g=0.01, henceforth “smallg,” which allows propagation
of purely reaction-diffusion waves, i.e., withh+=h−=0,
D.0; andg=0.016, henceforth “largeg,” for which purely
reaction-diffusion waves do not propagate, and taxis is re-
quired [see Fig. 1(a)–1(c)]. Systems(1) and (2) are nondi-
mensionalized, thus all the variables and parameters are di-
mensionless.

In all numerics, we used nonflux boundary conditions:
u]P/]xux=0,L=0 and u]Z/]xux=0,L=0 for one-dimensional
problems,xP f0,Lg, and u]P/]xux=0,Lx

=0, u]Z/]xux=0,Lx
=0,

and u]P/]yuy=0,Ly
=0, u]Z/]yuy=0,Ly

=0 for two-dimensional
problems,sx,ydP f0,Lxg3 f0,Lyg.

III. “HALF-SOLITON” WAVE INTERACTION IN ONE-
DIMENSIONAL CASE

Figure 2 illustrates spatiotemporal dynamics of population
taxis waves in Eq.(1), including their formation, propaga-
tion, and reflection from boundaries. The waves were initi-
ated, both for smallg, panel(a), and for largeg, panel(b),
by setting initial conditions forPsx,0d=0.8 forxP f0,1g and
Psx,0d for xP s1,Lg andZsx,0d for xP f0,Lg equal to their
equilibrium values.

The key observation for the present paper is that taxis
waves establish their stationary structure and corresponding
speed only after a rather long transient. Figure 3 illustrates
variations of the propagation velocity,V [panels(a) and(c)]
and width, W [panels(b) and (d)] of a wave during such
transients, both before and after its reflection from the

FIG. 4. Variations of the wave pro-
files, corresponding to the selected time
moments in Figs. 2(a), 3(a), and 3(b).

FIG. 5. Variations of the wave pro-
files, corresponding to the selected time
moments in Figs. 2(b), 3(c), and 3(d).
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FIG. 6. The spatiotemporal dynamics
of the taxis waves periodically initiated
at the left end, with time periodT, speci-
fied under the density plots. Independent
variables ranges:L=250, tP f0,2000g.
(a) and(b): g=0.01,D=0.04,h−=h+=1;
(c) and (d): g=0.016, D=0, h−=5, h+

=1.

FIG. 7. Collision of W200 (from the
left) and W466 (from the right). Param-
etersg=0.01,D=0.04,h−=h+=1.

FIG. 8. Collision of W350 (from the
left) and W466 (from the right). Param-
etersg=0.01,D=0.04,h−=h+=1.
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boundary. During the transient, the propagation velocity dis-
tinctly decreases for a short interval of time(approximately
betweent=450 and 550), while the wave width continues to
monotonically approach its stationary value. This temporary
decrease of the velocity correlates with a change in the shape
of the wave profile. Figures 4 and 5 show the wave profiles
corresponding to selected time moments, indicated by arrows
on Fig. 3. We see that the temporary decrease of propagation
velocity corresponds to the transition of the wave profile
from a double-hump to a single-hump shape. As mentioned
earlier, in Ref.[2] we have shown that these two shapes
correspond to two distinct branches on the graph of station-
ary propagation speedV on h+, “parabolic” and “linear.” Fig-
ures 4 and 5 demonstrate that the transition from one shape
to the other happens during the transient, and thus associated
variations in the propagation velocity seen in Fig. 3. Besides,
the change of shape itself causes apparent short-term change

in the velocity due to the method of measuring the velocity
of the wave, as the velocity of the point with a particular
value of P; this is the main reason with the sharp local
minima of the propagation velocity coinciding with the tran-
sitions from one wave shape to the other.

On the other hand, the type of interaction of stationary
waves, i.e., reflection or annihilation(see Fig. 1), also corre-
lates with the shape of the profiles of those waves[2]. Since
the shape of the profiles changes in the long transient after
the wave initiation, we decided to check if the waves at
different stages of their “lives” will show different types of
interaction, corresponding to their current shape. This con-
jecture has been tested by numerical experiments, the results
of which are presented in Fig. 6. Periodic waves were initi-
ated in a one-dimensional medium with nonflux boundaries.
In addition to already-known quasisoliton reflection of waves
and their splitting, we have observed also a type of interac-

FIG. 9. Collision of W466 (from the
left) and W466 (from the right). Param-
etersg=0.01,D=0.04,h−=h+=1.

FIG. 10. Collision ofW650 (from the
left) and W466 (from the right). Param-
etersg=0.01,D=0.04,h−=h+=1.
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tion where of two colliding waves, only one survives,
whereas the other decays. We call this “half-soliton” interac-
tion.

For a detailed study of this half-soliton interaction, we
simulated collisions of artificially prepared taxis waves of
different “ages.” We have recorded a wave in a large medium
at chosen moments of its transient, namely,t=195, 345, 461,
and 645;(all by five time units earlier than the moments
shown on Fig. 4). Then we set up initial conditions, in which
in one-half of the medium we used a recorded wave of one
age, suitably shifted along thex axis, and in the other half of
the medium we used another recorded wave. Of course, the
wave in the right half of the medium was also inverted, so as
to move towards the left wave. As the time from such artifi-
cial initial conditions to the collision was approximately five
time units, the ages of waves at the very moment of collision
correspond to those shown in Fig. 4. So, we denote such
waves asW200, W350, W466, andW650, according to their ages.

Figure 7 describes interaction of wavesW200 and W466.
The result is thatW200 has suppressedW466. Similar events
are shown in Figs. 8(W350 vs W466), 9 (W466 vs W466), and 10
(W650 vs W466). Tables I and II summarize the results of
collisions of waves of various ages.

These results suggest that the half-soliton interaction
takes place when the two colliding waves are essentially dif-
ferent in their widths. A thinner, older wave is less likely to
penetrate through a younger, thicker wave. Note that since
the colliding waves now are different from each other, we

can distinguish “reflection” from “penetration” of the waves,
and the most natural interpretation is that the waves penetrate
though each other, if they do, rather than reflect.

IV. HALF-SOLITONS IN TWO DIMENSIONS

In our previous work[3], we have described some typical
two-dimensional regimes of propagation of taxis waves in
Eqs.(1) and(2). In particular, we have demonstrated that for
parameters corresponding to quasisoliton behavior in one di-
mension, concentric waves can either penetrate/reflect on
collision, or annihilate, depending on conditions, particularly
on the curvature of the waves. The results of the previous
section show, however, that another factor that can affect the
result of collision, is the “age” state of the colliding waves.

Let us consider the interaction of concentric taxis waves
of different radia and different widths. As in one-dimensional
collisions, the initial conditions have been prepared from
solitary one-dimensional pulses recorded at different stages
of their transients and therefore having different widths. If
P1dsxd, Z1dsxd is such a recording, shifted along thex axis so
that the front is atx=0, then initial conditions we used can be
described as

Psx,y,0d = P1dsÎx2 + y2 − Rd, Zsx,y,0d = Z1dsÎx2 + y2 − Rd,

whereR was the desired radius of the circular wave.
For parametersg=0.016,D=0, h−=5, h+=1, we initiated

a one-dimensional wave in the standard way described
above, and recorded it at timest=120 (as waveW), t=150

TABLE I. Results of collisions forg=0.01, D=0.04, h−=h+

=1. Here “A” denotesW200, “B” is W350, “C” is W466, “D” is W650.
The result of the collision is shown on the intersection of the cor-
responding row and column, the letter denotes the surviving wave,
“1” means both waves survive, “2” means neither survives. Ap-
proximate ratios of widthssP=0.4d are: lA/lD=5.3, lB/lD=2,
lC/lD=1.25.

A B C D

A 2 A A A

B A 1 B B

C A B 1 1

D A B 1 1

TABLE II. Results of collisions forg=0.016,D=0, h−=5, h+

=1. Here “a” isw84, “b” is w140, “c” is w160, “d” is w450, corre-
sponding to the selected moments indicated on Fig. 2, see also Figs.
3(c) and 3(d). The approximate ratios of widthssP=0.4d are:
la/ld=2.8, lb/ld=1.4, lc/ld=1.14.

a b c d

a 2 a a a

b a 2 b b

c a b 1 1

d a b 1 1

FIG. 11. Quasisoliton interaction of
two U waves with initial radiaR=70.
Time interval between the panels is 20.
Medium sizeLx3Ly=1503100.
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FIG. 12. Quasisoliton interaction of a
U wave and anS wave with initial radia
R=70. Time interval between the panels
is 20. Domain sizeLx3Ly=1503100.

FIG. 13. Half-soliton interaction of a
U wave and aW wave with initial radia
R=70. Time interval between the panels
is 20. Domain sizeLx3Ly=1503100.

FIG. 14. Interaction of twoS waves
with initial radius R=40. Timing is
shown under the panels. Domain size
Lx3Ly=1503100.
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(wave S), and t=450 (wave U). These recorded waves had
widths, measured at levelP=0.4, correspondingly,lW=9.2,
lS=6.4, andlU=5.1, so thatlW/lU=1.8 andlS/lU=1.25.

Figure 11 shows the interaction of twoU waves with
initial radia R=70. In this case, the waves both penetrate
through each other and reflect from the domain boundaries.
Similar quasisoliton interaction is observed on collision of a
U and anS waves with equal radiaR=70, see Fig. 12. The
interaction ofU and W waves with the same radia demon-
strates a half-soliton behavior, when waveW suppressesU,
but annihilates at the boundary, see Fig. 13 .

The collision of twoS waves with initial radiaR=40, see
Fig. 14, produces spatially localized waves, which we call
“taxitons” [panels(d)–(f)]. These taxitons interact in a half-
soliton way with waves reflected from the boundaries[panels
(g), (h)].

There are also simulations showing both half-soliton and
taxiton regimes at the same time. In Fig. 15, waveU with
initial radiusR=70 collided with waveS with initial radius
R=40. The result was that theS wave penetrated throughU
in the half-soliton way, and theU wave penetrated only par-
tially, as a taxiton[panels(c)-(e)]. This is followed by an
even more complicated picture of different kinds of interac-
tions, including tip swelling as described in Ref.[3] [panels
(n), (o)].

The type of interaction(annihilation, quasisoliton, or half-
soliton) depends not only on the curvature and width of the
colliding waves, but also on the angle of collision. This ex-
plains the formation of the taxitons, where only a part of a
wave continues to propagate after collision, even though all
parts of the wave are of the same age. The waves colliding
head on are more likely to penetrate than in a skewed colli-

FIG. 15. The interaction of aU wave
with initial radius R=70 and anS wave
with initiation radiusR=40. Time inter-
val between the panels is 20. Domain
sizeLx3Ly=1503100.

FIG. 16. The interaction of two planeU waves, with an initial angle of 80° between them. Time interval between the panels is 20.
Domain sizeLx3Ly=150350.
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sion, and so when the widths of the waves are close to their
critical values allowing penetration, only the part of the wave
that is close to first collision site penetrates, whereas more
distant parts annihilate.

Figures 16 and 17 illustrate collision at different angles in
pure form. Initial conditions have been formed from the
same 1D waveU (old age, well established), arranged in two
dimensions in the form of two plane waves meeting each
other at different angles, i.e.,

Psx,y,0d = P1dfx cossud + y sinsud − Cg,

Zsx,y,0d = Z1dfx cossud + y sinsud − Cg,

whereu and C are constants, different for the left and the
right halves of the medium.

In Fig. 16, the angle between the fronts of the waves is
80°, and the waves annihilate. In Fig. 17, the angle is 60°,
and the waves penetrate through each other. This proves di-
rectly that result of collision depends on the angle of inci-
dence.

V. CONCLUSIONS

In our previous papers[1–3] we have described soliton-
like behavior and also spontaneous wave splitting in a class
of waves that can exist in population dynamics models due
to taxis of species to each other’s gradients. It was shown
that properties of taxis waves are essentially different from
those of solitary waves observed in excitable reaction-
diffusion systems.

In the present paper we have described properties of such
taxis waves.

(a) “Half-soliton interaction,” when only one of the
colliding waves penetrates and the other annihilates. This is
observed both in one and in two spatial dimensions.

(b) “Taxitons,” i.e., compact pieces of solitary waves
in two dimensions, that can form when only a part of a
colliding wave can manage to penetrate through the
collision.

We have demonstrated that half-soliton interaction de-
pends on the width of the colliding waves, which can depend
on their history, and formation of taxitons depends on that
too, and also on the angle of incidence between the colliding
waves. The dependence on the angle of incidence is appar-
ently related to the dependence on the wave width, as in an
oblique collision, the apparent width of the waves along the
line of collision is larger.

So, the results of the present and previous works[1–3]
demonstrate that population taxis waves have unique proper-
ties, making them different both from solitons in conserva-
tive systems[7], and from solitary waves in excitable
reaction-diffusion systems[8,9]. A broader investigation of
this new class of nonlinear waves is required, which is both
interesting from mathematical viewpoint, and also motivated
by recent experimental studies of chemotaxis in bacteria
[10,11], which demonstrated interesting results on propaga-
tion and interaction of population taxis waves, and also on
the self-organization of population systems with taxis
[12–22].
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