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Half-soliton interaction of population taxis waves in predator-prey systems
with pursuit and evasion
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In this paper, we use numerical simulations to demonstrate a half—soliton interaction of waves in a math-
ematical model of a “prey-predator” system with taxis when of two colliding waves, one annihilates and the
other continues to propagate. We show that this effect depends on the “ages” or, equivalently, “widths” of the
colliding waves. In two spatial dimensions we demonstrate that the type of interaction, i.e., annihilation,
quasisoliton, or half-soliton, depends not only on curvature and width of the colliding waves, but also on the
angle of the collision. When conditions of collision are varying in such a way that only a part of a wave
survives the collision, then “taxitons,” compact pieces of solitary waves, may form, which can exist for a
significant time.
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I. INTRODUCTION f(P,Z) = BP(1 - P) — ZP/(P? + 1?),
In this paper we continue the study of a system of two )
spatially distributed populations in a “predator-prey” rela- 9(P,2) = yZP?(P*+ v*) ~WZ. (2

tionship with each other, started in our previous wqtks3|. ¢ js known that at an appropriate choice of parameters, these
The spatial evolution is governed by three processes: posiinetics demonstrate “excitable” behavior, and the reaction-

tive taxis of predators up the gradient of prggursuiy and  yiffusion system(1) with h_=h,=0 has propagating solitary
negative taxis of prey down the gradient of predat@ea- |qye solutiond5,6].

sion), yielding nonlinear “cross-diffusion” terms, and ran-  \ye have studied properties of population taxis waves in
dom motion of both specig@liffusion). The resulting math- 16 mathematical mode(l) and (2) for one-dimensional

ematical model is a system of two partial differential (1D) [1,2] and two-dimensiona(2D) [3] cases. In those

equations, works, we have shown that inclusion of the taxis terms can
9P radically change the properties of propagating waves, com-
—=f(P,Z2)+DV?P+h_V(PV2), pared to the much better studied waves in purely reaction-
n diffusion systems without taxis. We have demonstrated that
the very mechanism of propagation of waves in such systems
iz 5 is different. Here are some peculiar features of taxis waves,

g 9(P.2) +DV°Z-h,V(ZVP), @) gescribed in Refg1,2].

(a) Essentially different shape of the wave profiles. For
whereP(r 1) is the density of the prey populatio(r ,t) is  the P(x—ct) profile, it could be either a “single-hump” or
the density of the predator population, the nonlinear func«double-hump” shape.
tions f(P,Z) andg(P,Z) describe local dynamics, including  (b) The dependence of the wave-propagating velocity on
growth and interaction of the species, whereas the diffusiohe taxis coefficients has two distinct branches, “parabolic”
terms describe their spread in space, e.g., resulting from irand “linear.” The transition from one branch to the other
dividual random motions. The taxis terms are as in R&{.  correlates with changes in the shape of the wave profiles: the
constanth_ is the coefficient of negative taxis & on the  parabolic branch of this graph corresponds to a double-hump
gradient ofZ (prey-evading predatoysandh, is the coeffi-  shape of theP(x—ct) profile, and the linear branch corre-
cient of positive taxis ofZ on the gradient of (predators  sponds to a single-hump shape.
pursuing prey. For simplicity, the diffusion coefficienD is (c) In the space of parameters of Hd), there are large
considered constant, uniform, and equal for both species. Ifegions, where waves demonstrate quasisoliton interaction:
this paper we consider problems in one spatial dimensionthey can penetrate through each other, and also reflect from
r=(x), and in two spatial dimensions=(x,y). impermeable boundaries, see Figa)1(c).

We consider the local kinetics function§P,Z) and (d) For some regions in the parameter space, taxis waves
g(P,2), describing the population dynamics of prgghy-  can spontaneously split, emitting “backward”- propagating
toplanktor) P and predatorgzooplankton Z, in the Holling  waves. This can be observed both in the case of solitonlike
type-lll form used by Truscott and Brindlef]. In nondi- interaction[Fig. 1(a), solid triangle$ and in the case of an-
mensional form these are nihilating wavegqFig. 1(a), hollow triangle$. The backward-
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FIG. 2. The spatiotemporal dynamics of the taxis wave forma-
tion, propagation, and reflection from impermeable boundaries for
system(1) in one-dimensional case with=250: (a) y=0.01,D
=0.04,h_=h,=1; (b) y=0.016,D=0, h_=5, h,=1. Black corre-

FIG. 1. (a),(b),(c) Parametric regions corresponding to different SPONds toP=0.9, white toP=0.
regimes of taxis wave§3=1,w=0.004. Solid circles: quasisoliton

waves. Solid triangles: quasisolitons with the wave splitting. Hol-

In this paper, by numerical simulation of syste(g and

low circles: stably propagating waves annihilating on collision. (2) we demonstrate a type of wave interaction, in which of
Hollow triangles: splitting waves annihilating on collision. Dots: no two colliding waves, one annihilates and the other continues

propagating wave solutiond) Wave-propagation velocity as a tqg propagate. For brevity, we call this behavior “half-
function of the square root of the diffusion coefficient. Solid line gqjiton.”

and the upper row of symbol3:=0.016,h_=5, h,=1. Dotted line
and the lower row:y=0.01, h_=h,=1. In reaction-diffusion sys-

tems, this dependence is always a straight line. Here and on other

figures, all parameters and variables are dimensionless.

II. DETAILS OF THE MODEL AND NUMERICAL
METHODS

emitted waves with time either decay, or split themselves. In  We used “upwind” schemes to approximate the taxis
the latter case, the chain of splitting events can lead to selterms£u=(d/dx)u(x,t)[dS(x,t)]/x. The idea of the upwind

supporting, aperiodic, or approximately periodic activity.

schemes is that they use not the mean between values of the

(e) The dependence of the propagation velocity on diffu-variables subject to taxis at two neighboring grid nodes as in
sion in this system differs from the square-root dependencdhe central scheme, but select one or the other depending on
always valid for reaction-diffusion waves, see Figd)1

Additionally, in two spatial dimensions, we observed theattractant. For details of the schemes we used, see our pre-

following [3]:

the direction of taxis, i.e., the sign of the gradient of the

vious work[2]. As we have shown in Ref2], the implicit

(f) Partial reflection of waves from boundaries, or theircentral scheme only works for E@l) if D >0, whereas our
partial penetration through each other.
(g) “Swollen tips,” i.e., circular wave sources, produced implicit scheme with discretization ste@=0.1, andét=5
by free ends of broken waves.
(h) Attachment of free ends of broken waves to the waveone with discretization steps fobx=90y=0.5 and &t=5

backs.
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upwind schemes work fob=0 as well. We used a time-
% 1072 for one-dimensional simulations, and a time-explicit

x 1072 for two-dimensional calculations.
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FIG. 3. Variations of the propagation velocitg),(c) and wave width(b),(d) during the transient, corresponding to Fig.(2),(b) y
=0.01,D=0.04,h_=h,=1, (¢),(d) y=0.016,D=0, h_=5, h,=1. Width W(t) is defined as the distance between the points on the front and
the back of the wave whel®(x,t)=0.4; propagation velocity(x,t) is defined as the instant velocity of such a point on the front, i.e., where
P(x,t)=0.4 anddP/at(x,t)>0. Arrows designate the time moments, for which Figs. 4 and 5 show the wave profiles.
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(a)t = 200 (b)t = 350 (Ot = 466 FIG. 4. Variations of the wave pro-
files, corresponding to the selected time
1P 1 P2 1% moments in Figs. @), 3(a), and 3b).
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Unless specified otherwise, we have used the same pa-IIl. “HALF-SOLITON" WAVE INTERACTION IN ONE-
rameters in Eq(1) in our numerics, as we used in RE2], DIMENSIONAL CASE

that is =1, »=0.07,w=0.004, and two different values of  Figyre 2 illustrates spatiotemporal dynamics of population
y: y=0.01, henceforth “smaly,” which allows propagation taxis waves in Eq(1), including their formation, propaga-
of purely reaction-diffusion waves, i.e., with,=h_=0,  tjon, and reflection from boundaries. The waves were initi-
D>0; andy=0.016, henceforth “large,” for which purely  ated, both for smally, panel(a), and for largey, panel(b),
reaction-diffusion waves do not propagate, and taxis is reby setting initial conditions foP(x,0)=0.8 forx [0, 1] and
quired [see Fig. 1a)-1(c)]. Systems(1) and (2) are nondi-  p(x,0) for x (1,L] andZ(x,0) for xe[0,L] equal to their
mensionalized, thus all the variables and parameters are diquilibrium values.
mensionless. N The key observation for the present paper is that taxis
In all numerics, we used nonflux boundary conditions:waves establish their stationary structure and corresponding
9P/ Xx=0.=0 and JZ/dx|,=o, =0 for one-dimensional gpeed only after a rather long transient. Figure 3 illustrates
problems,x e [0,L], and 9P/ dXx=0,, =0, Z/3x|x=0L, =0,  variations of the propagation velocity, [panels(a) and(c)]
and 5P/0Y|y=o,|_y=0y 8Z/W|y=o,|_y=0 for two-dimensional  and width, W [panels(b) and (d)] of a wave during such
problems,(x,y) € [0,L,]X[0,L,]. transients, both before and after its reflection from the

50 70 90
(a)t = 84 (b)t = 140 ©t = 160 FIG. 5. Variations of the wave pro-
, . . files, corresponding to the selected time
1F# 1 F* 172 moments in Figs. @), 3(c), and 3d).
08 08
06 06
04 04
02 3 02 A
x 0 x 0 x
190 210 230 250 190 210 230 250 4 60 80 100
(d)t = 450 (e)t = 560 (f)t = 850
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FIG. 6. The spatiotemporal dynamics
of the taxis waves periodically initiated
at the left end, with time period, speci-
fied under the density plots. Independent
variables rangesL=250, t [0,2000.

(@) and(b): y=0.01,D=0.04,h_=h,=1;
(c) and (d): y=0.016,D=0, h_=5, h,
=1.

FIG. 7. Collision of Wy (from the
left) and W,gg (from the righy. Param-
etersy=0.01,D=0.04,h_=h,=1.

FIG. 8. Collision of W35 (from the
left) and W,g¢ (from the righy. Param-
etersy=0.01,D=0.04,h_=h,=1.
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FIG. 9. Collision of Wy (from the
left) and W,g¢ (from the righy. Param-
etersy=0.01,D=0.04,h_=h,=1.

boundary. During the transient, the propagation velocity disin the velocity due to the method of measuring the velocity

tinctly decreases for a short interval of tini@pproximately

of the wave, as the velocity of the point with a particular

betweent=450 and 55§ while the wave width continues to value of P; this is the main reason with the sharp local
monotonically approach its stationary value. This temporaryminima of the propagation velocity coinciding with the tran-
decrease of the velocity correlates with a change in the shagstions from one wave shape to the other.

of the wave profile. Figures 4 and 5 show the wave profiles On the other hand, the type of interaction of stationary
corresponding to selected time moments, indicated by arromwaves, i.e., reflection or annihilatiqeee Fig. 1, also corre-

on Fig. 3. We see that the temporary decrease of propagatidates with the shape of the profiles of those waj\#&s Since
velocity corresponds to the transition of the wave profilethe shape of the profiles changes in the long transient after
from a double-hump to a single-hump shape. As mentionethe wave initiation, we decided to check if the waves at
earlier, in Ref.[2] we have shown that these two shapesdifferent stages of their “lives” will show different types of
correspond to two distinct branches on the graph of stationinteraction, corresponding to their current shape. This con-

ary propagation speédon h,, “parabolic” and “linear.” Fig-

jecture has been tested by numerical experiments, the results

ures 4 and 5 demonstrate that the transition from one shap# which are presented in Fig. 6. Periodic waves were initi-
to the other happens during the transient, and thus associatated in a one-dimensional medium with nonflux boundaries.
variations in the propagation velocity seen in Fig. 3. Besidesln addition to already-known quasisoliton reflection of waves
the change of shape itself causes apparent short-term changed their splitting, we have observed also a type of interac-
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FIG. 10. Collision ofWgsg (from the
left) and W,g¢ (from the righy. Param-
etersy=0.01,D=0.04,h_=h,=1.
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TABLE I. Results of collisions fory=0.01, D=0.04, h_=h, TABLE II. Results of collisions fory=0.016,D=0, h_=5, h,
=1. Here “A” denotedN,gg, “B” is Wasg, “C” is Wyee “D” is Wesg =1. Here “a” iswgy, “D" IS Wyaq “C” IS Wigo “d” IS Wyso COrre-
The result of the collision is shown on the intersection of the cor-sponding to the selected moments indicated on Fig. 2, see also Figs.
responding row and column, the letter denotes the surviving wave3(c) and 3d). The approximate ratios of widthéP=0.4) are:
“+" means both waves survive;/~" means neither survives. Ap- Na/N\g=2.8,\p/Ng=1.4,\c/Ng=1.14.
proximate ratios of widthgP=0.4) are: Aa/Ap=5.3, A\g/\p=2,

Nc/Ap=1.25. a b C d
A B C D a - a a a
b a - b b
A - A A A c a b + +
B A * B B d a b + +
C A B + +
D A B + +

can distinguish “reflection” from “penetration” of the waves,
and the most natural interpretation is that the waves penetrate
tion where of two colliding waves, only one survives, though each other, if they do, rather than reflect.
whereas the other decays. We call this “half-soliton” interac-
tion.

For a detailed study of this half-soliton interaction, we IV. HALF-SOLITONS IN TWO DIMENSIONS
simulated collisions of artificially prepared taxis waves of . : .
different “ages.” We have recorded a wave in a large medium N 0Ur previous work3], we have described some typical

at chosen moments of its transient, nameh/195, 345, 461, gvo-dilmengiozna: regimesl of prorﬁ)agat(;on of taxis (\j/vz:]vesf in
and 645;(all by five time units earlier than the moments E9S-(1) and(2). In particular, we have demonstrated that for

shown on Fig. % Then we set up initial conditions, in which parameters corresponding to quasisoliton behavior in one di-

in one-half of the medium we used a recorded wave of onénens.ion’ concgn.tric waves can either p_gnetrate/rr-_:flect on
age, suitably shifted along theaxis, and in the other half of collision, or annihilate, depending on conditions, partlcula_lrly
the medium we used another recorded wave. Of course, tH} the curvature of the waves. The results of the previous
wave in the right half of the medium was also inverted, so agection ShOV‘.” _howgver, that another factor thafc can affect the
to move towards the left wave. As the time from such artifi—resun of colhspn, IS thg "age” state of the coII_|d|ng waves.
cial initial conditions to the collision was approximately five L.et us cons.|der the'lnteractlt_)n of concentric taxis waves
time units, the ages of waves at the very moment of coIIisiorPf d_|ﬁ_‘erent radla {;\_nd d'ﬁer?'.”t widths. As in one-dimensional
correspond to those shown in Fig. 4. So, we denote sucﬁOI!'S'onS' the_ |n|t|a_l conditions have been pr_epared from
waves ado Wase Wage andWis, according to their ages. solltar_y one-dmensmnal pulses reco_rded at dlfferent stages
Figure 7 describes interaction of waveg, and Wyeg, of their transients and theref_ore ha_vlng different w_|dths. If
The result is thatV,y, has suppressed/,ss Similar events P1a(X), Z14(X) is such a recording, shifted along thewxis so
are shown in Figs. 8\aso Vs Wiee), 9 (Waes VS Wigg), and 10 that the front is ak=0, then initial conditions we used can be
(Weso VS Wiee). Tables | and Il summarize the results of described as
collisions of waves of various ages. _ N2 o2 _ 2 2 _
These results suggest that the half-soliton interactionp(x'y'o) =PuWCHY =R, 200,00 =21+ Y- R),
takes place when the two colliding waves are essentially difwhereR was the desired radius of the circular wave.
ferent in their widths. A thinner, older wave is less likely to  For parametery=0.016,D=0, h_=5, h,=1, we initiated
penetrate through a younger, thicker wave. Note that since one-dimensional wave in the standard way described
the colliding waves now are different from each other, weabove, and recorded it at timés 120 (as waveW), t=150

P U e
[ A | FIG. 11. Quasisoliton interaction of
(2) © two U waves with initial radiaR=70.

Time interval between the panels is 20.

(b)
. o Medium sizeL, X L,=150x 100.
1 0
() [
- L4

@ © ®
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FIG. 12. Quasisoliton interaction of a
U wave and ar§ wave with initial radia
R=70. Time interval between the panels
is 20. Domain size, X L,=150x 100.

FIG. 13. Half-soliton interaction of a
U wave and aV wave with initial radia
R=70. Time interval between the panels
is 20. Domain size., X L,=150x 100.

FIG. 14. Interaction of twdS waves
with initial radius R=40. Timing is
shown under the panels. Domain size
Ly X Ly=150x% 100.
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@) (b) ©
@ © ®
/ / f FIG. 15. The interaction of & wave
: ' with initial radius R=70 and anS wave
’ \ with initiation radiusR=40. Time inter-
\ \ val between the panels is 20. Domain
sizeL, X L,=150x 100.
® (h) (6)

@

(LY

o

(m)

(n)

©)

(wave S), andt=450 (wave U). These recorded waves had
widths, measured at levé=0.4, correspondinglyz,=9.2,
As=6.4, and\y=5.1, so that/\y=1.8 and\g/\y=1.25. initial radius R=70 collided with waveS with initial radius
Figure 11 shows the interaction of twd waves with R=40. The result was that th&@wave penetrated throudh
initial radia R=70. In this case, the waves both penetratein the half-soliton way, and the wave penetrated only par-
through each other and reflect from the domain boundariegially, as a taxiton[panels(c)-(e)]. This is followed by an
Similar quasisoliton interaction is observed on collision of aeven more complicated picture of different kinds of interac-
U and anS waves with equal radi®=70, see Fig. 12. The tions, including tip swelling as described in RE3] [panels
interaction ofU and W waves with the same radia demon- (n), (0)].
strates a half-soliton behavior, when wawesuppresses, The type of interactiorfannihilation, quasisoliton, or half-
but annihilates at the boundary, see Fig. 13 . soliton) depends not only on the curvature and width of the
The collision of twoS waves with initial radiaR=40, see  colliding waves, but also on the angle of collision. This ex-
Fig. 14, produces spatially localized waves, which we callplains the formation of the taxitons, where only a part of a
“taxitons” [panels(d)—(f)]. These taxitons interact in a half- wave continues to propagate after collision, even though all
soliton way with waves reflected from the boundafigsnels parts of the wave are of the same age. The waves colliding

(9), (h)]. head on are more likely to penetrate than in a skewed colli-

There are also simulations showing both half-soliton and
taxiton regimes at the same time. In Fig. 15, wavevith

y X

(@) (b) © @

FIG. 16. The interaction of two plang waves, with an initial angle of 80° between them. Time interval between the panels is 20.
Domain sizel, X L,=150x 50.
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\VAED @ Wa N VAR

@) (L] ©)

FIG. 17. The interaction of two plang waves, with an initial angle of 60° between them. Time interval between the panels is 30.
Domain sizel, X L,=150% 50.

sion, and so when the widths of the waves are close to their (a) “Half-soliton interaction,” when only one of the
critical values allowing penetration, only the part of the wavecolliding waves penetrates and the other annihilates. This is
that is close to first collision site penetrates, whereas morebserved both in one and in two spatial dimensions.
distant parts annihilate. (b) “Taxitons,” i.e., compact pieces of solitary waves
Figures 16 and 17 illustrate collision at different angles inin two dimensions, that can form when only a part of a
pure form. Initial conditions have been formed from thecolliding wave can manage to penetrate through the
same 1D wavéJ (old age, well establishg@gdarranged in two  collision.
dimensions in the form of two plane waves meeting each We have demonstrated that half-soliton interaction de-
other at different angles, i.e., pends on the width of the colliding waves, which can depend
on their history, and formation of taxitons depends on that
too, and also on the angle of incidence between the colliding
waves. The dependence on the angle of incidence is appar-
Z(x,y,0) = Z34[x coq 6) +y sin() - C], ently related to the dependence on the wave width, as in an
oblique collision, the apparent width of the waves along the

P(x,y,0) = Py[x coq6) +y sin(6) — C],

where § and C are constants, different for the left and the

right halves of the medium. IineSof cr(])llision lis Ia;g(;r. d .
In Fig. 16, the angle between the fronts of the waves is, S0 the results of the present and previous wqtks3]

80°, and the waves annihilate. In Fig. 17, the angle is 60°demonstrate that population taxis waves have unique proper-

and the waves penetrate through each other. This proves (ﬁ_es, making them different both from solitons in conserva-

rectly that result of collision depends on the angle of inci-1Ve §yste_ms[_7], and from solitary waves in ex_mtable
dence. reaction-diffusion systemg3,9]. A broader investigation of

this new class of nonlinear waves is required, which is both
interesting from mathematical viewpoint, and also motivated
V. CONCLUSIONS by recent experimental studies of chemotaxis in bacteria
[10,17, which demonstrated interesting results on propaga-

In our previous papergl-3 we have described soliton- tion and interaction of population taxis waves, and also on

like behavior and also spontaneous wave splitting in a clas e self-oraanization of bopulation Svstems with taxis
of waves that can exist in population dynamics models du{h 9 Pop y

to taxis of species to each other’s gradients. It was show 12-22.
that properties of taxis waves are essentially different from ACKNOWLEDGMENTS
those of solitary waves observed in excitable reaction-
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